Math 360 - Abstract Algebra - Assignment 1

1. For each of the following, decide whether the given sets with the given multiplication forms a group. If it does for a group, do the following: explain why it is closed under the operation, state the identity element, and describe how you would get the inverse of an arbitrary element, not a particular element (for instance, if I gave you $(\mathbf{Z},+)$, you wouldn't say that the inverse of 5 is -5 , you would say that the inverse of a is $-a$). If it does not form a group, demonstrate that it fails at least one of the axioms. property which
a) (\mathbf{Z}, \circ) where $a \circ b=a+b-37$.
b) (\mathbf{R}, \circ) where $x \circ y=x+y-x y$.
c) $\left(\mathbf{R}^{\times}, \times\right)$, where \mathbf{R}^{\times}means all the non-zero real numbers.
d) $\left(S L_{2}(\mathbf{R}), \circ\right.$, where $S L_{2}(\mathbf{R})$ are all the 2 by 2 inverible matrices with real entries, and \circ means matrix multiplication.
2. Do exercise E from chapter 2.
3. a) We have seen several solutions to the two-nail picture-hanging problem. One of them is $a b^{-1} a^{-1} b$. List thee other solutions.
b) Find a solution to the three-nail picture-hanging problem. Remember, the picture must fall if any one of the three nails is removed.
c) (Bonus) Find a solution to the four-nail picture-hanging problem. Find a solution to the n-nail picture-hanging problem.
