Section 9.4 #10 \[0 < \frac{1}{\sqrt{n^2+1}} < \frac{1}{n^{3/2}} \]

So \[\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \]

is convergent by p-test.

\[p = \frac{3}{2} > 1 \]

So by Direct Comparison Test, \(\sum \frac{1}{n^{3/2}} \) is convergent.

\[\sum_{n=1}^{\infty} \frac{5n-3}{n^2-2n+5} \]

Dominant power in numerator \[\frac{n}{n^2} \rightarrow \frac{1}{n} \]

denominator.

\[\lim_{n \to \infty} \frac{5n-3}{n^2-2n+5} \]

\[\lim_{n \to \infty} \frac{5n-3}{n^2-2n+5} = \lim_{n \to \infty} \frac{n}{n^2-2n+5} = \frac{1}{\infty} = 0 \]

since \(\sum \frac{1}{n} \) is divergent, \(\sum \frac{5n-3}{n^2-2n+5} \) is divergent by limit comparison test.

#28 \[\sum_{n=1}^{\infty} \tan \frac{1}{n} \]

Compare with \(\sum_{n=1}^{\infty} \frac{1}{n} \)

\[\lim_{n \to \infty} \tan \frac{1}{n} \]

L'Hopital's Rule

\[\lim_{x \to 0} \frac{\tan x}{x} = 1 \]

since \(\sum \frac{1}{n} \) is divergent, by limit comparison test.

\(\sum \tan \frac{1}{n} \) is also divergent.

Section 9.5 #14 \[\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)} \]

alternating series \(a_n = \frac{1}{\ln(n+1)} \)

\[\text{since } \ln(n+2) > \ln(n+1), \text{ we have } \frac{1}{\ln(n+2)} < \frac{1}{\ln(n+1)} \]

that is \(a_{n+1} < a_n \)

\[\lim_{n \to \infty} \frac{1}{\ln(n+1)} = 0 \]

By alternating series test \(\sum \frac{(-1)^n}{\ln(n+1)} \) is convergent.
Solutions 9.5 #26. \(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \) is alternating with \(a_n = \frac{1}{(2n+1)!} \).

Since \(\frac{1}{(2n+1)!} > \frac{1}{(2n+3)!} \),

This is true because \((2n+3)! > (2n+1)\!),

So \(a_{n+1} < a_n \).

\(\lim_{n \to \infty} \frac{1}{(2n+1)!} = 0 \).

So by Alternating Series Test \(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \) is convergent.

#50 \[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^n} \] check for absolute convergence,

\[\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n^n} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \to \text{convergent by p-test} \]

\(p = \frac{3}{2} > 1 \)

Since \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^n} \) is absolutely convergent, it is convergent itself.

#52 \[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2n+3)}{n+10} \] By n-th term test, \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2n+3)}{n+10} \) is divergent.

#59 \[\sum_{n=0}^{\infty} \frac{\cos(nt)}{n+1} \]

Check for absolute convergence,

\[\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{n+1} \right| = \sum_{n=0}^{\infty} \frac{1}{n+1} \to \text{divergent (compare with } \sum_{n=1}^{\infty} \frac{1}{n} \text{)} \]

So, \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} \) is not absolutely convergent.

Is it conditionally convergent? Yes, we can use alternating series test: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} \) and \(a_n = \frac{1}{n+1} \to \text{decreasing because } \frac{n+1}{n+2} < \frac{1}{n+1} \)

\(\lim_{n \to \infty} \frac{1}{n+1} = 0 \).