Euclidean Algorithm:

\[a = bq_1 + r_1 \quad 0 < r_1 < b \]
\[b = r_1q_2 + r_2 \quad 0 < r_2 < r_1 \]
\[r_1 = r_2q_3 + r_3 \quad 0 < r_3 < r_2 \]

Line k-1: \(r_{k-1} = r_{k-2}q_k + r_k \quad 0 < r_k < r_{k-2} \)

Line k: \(r_k = r_{k-1}q_k + r_{k-2} \quad 0 < r_k < r_{k-1} \)

Line k+1: \(r_{k+1} = r_kq_{k+1} + r_{k-1} \quad 0 < r_{k+1} < r_k \)

N.T.P: two things to prove: \(D = \gcd(a, b) \)

1. \(r_k \mid a \) and \(r_k \mid b \)
2. If \(r_k \mid a \) and \(r_k \mid b \), then \(r_k \mid D \)

Proof:

1. Line \(k+1 \Rightarrow r_k \mid r_{k+1} \)

 Then since \(r_{k+1} = r_kq_{k+1} + r_{k-1} \)

 \(r_k \) also divides \(r_{k-1} \)

 Then line \(k-1 \Rightarrow r_k \mid r_{k-1} \)

 Continuing the process we get \(r_k \mid b \)

2. Suppose \(r_k \mid a \) and \(r_k \mid b \).

 Then \(r_k \mid r_1 \) because line \(1 \Rightarrow r_1 = a - bq_1 \)

 Then similarly \(b/c \) \(r_k \mid r_2 \) and \(r_k \mid r_1 \) we get \(r_k \mid r_2 \)

 (because line \(k \Rightarrow r_2 = b - r_1q_k \))

 Continuing this process we get that \(r_k \mid D \)

 So \(r_k \mid D \)

by 1 \& 2, \(D = \gcd(a, b) \).

Euclid's Lemma:

Suppose \(p \mid ab \) and \(p \nmid a \).

Then, \(p \mid b \).

Proof:

Suppose \(p \mid ab \) and \(p \nmid a \).

Need to show: \(p \mid b \).

If \(p \mid a \), Euclid's Lemma either \(p \mid b \) or \(p \mid c \).

If \(p \mid b \), since \(p \mid a \), we get \(p \mid c \).

If \(p \mid c \), since \(p \mid a \), we get \(c \mid b \).

So, we can't have \(ab \mid c \).

Hence, \(ab \mid c \).

Ch 0 #16

\[126 = 3 \times 4 + 24 \]
\[34 = 1 \times 24 + 10 \]
\[24 = 2 \times 10 + 4 \]
\[10 = 2 \times 4 + 2 \]
\[4 = 2 \times 2 + 0 \]

\[2 = 10 - 2 \times 4 \]
\[= 10 - 2 \times (24 - 2 \times 10) = 5 \times 10 - 2 \times 24 \]
\[= 5 \times (34 - 24) - 2 \times 24 = 5 \times 34 - 7 \times 24 \]
\[= 5 \times 34 - 7 \times (126 - 3 \times 34) \]
\[2 = 26 \times 34 - 7 \times 126 \]
CHO # 21
A set with \(n \) elements has \(2^n \) subsets for every \(n \in \mathbb{Z}^+ \).

Proof by Induction:

Initial case: \(n = 1 \).

Subsets of a set, with a single element are \(\emptyset \) and the set itself, so

For: \(n = 1 \), \# subsets = \(2^1 = 2 \).

Inductive hypothesis:

Assume a set with \(n \) elements has \(2^n \) subsets.

Suppose \(A \) has \(n+1 \) elements, say \(A = \{a_1, a_2, ..., a_n, a_{n+1}\} \).

Consider \(B = \{a_1, ..., a_n\} \), any.

By the inductive assumption \(B \) has \(2^n \) subsets.

Subsets of \(B \) are obviously subsets of \(A \). \(A \) will have additional subsets which are obtained by including \(a_{n+1} \) to each of the subsets of \(B \).

So number of additional subsets will be \(2^n \) as well.

Total number of subsets of \(A \) is then \(2^n + 2^n = 2 \cdot 2^n = 2^{n+1} \).

(We used the first principle of induction.)

CHO # 28
fn: with Fibonacci number

\[f_1 = f_2 = 1 \]

\[f_n = f_{n-1} + f_{n-2} \text{ for } n > 3 \]

Show that \(f_n < 2^n \) for all \(n \geq 3 \).

Proof by Induction:

Initial case: \(n = 3 \).

\[f_3 = f_2 + f_1 = 1 + 1 = 2 = 2^1 \leq 2^3 \]

Inductive hypothesis:

Assume \(f_k < 2^k \) for all \(k \leq n \).

Prove that \(f_{n+1} < 2^{n+1} \).

\[f_{n+1} = f_n + f_{n-1} < 2^n + 2^{n-1} \]

\[= 2^n + 2^{n-1} \]

\[< 2^n + 2^n = 2^{n+1} \]

By inductive assumption:

\(f_n < 2^n \) and \(f_{n-1} < 2^{n-1} \).

So, \(f_{n+1} < 2^n + 2^{n-1} \leq 2^n + 2^n = 2^{n+1} \).

CHO # 41
ISBN for our book: <0 6 1 8 5 1 4 1 6>

dot product with \(\langle 10, 01, 8, 7, 6, 5, 4, 3, 2, 1 \rangle \)

\(\langle 1, 54 + 8 + 56 + 30 + 5 + 16 + 21 + 2 + 6 \mod 11 \rangle - 1 + 8 + 2 + 7 + 5 + 5 + (-9) + 2 + 6 = 0 \)

\(S = \mathbb{Z}, \text{ a R b iff } 5 | a-b \).

i) reflexivity: Is \(a \RA a \in S \)?

Yes does \(5 | a-a \in \mathbb{Z} \)?

ii) symmetry: If \(a \RA b \) then is \(b \RA a \in S \)?

\[a \RA b \iff 5 | a-b \iff 5 | -(b-a) \iff 5 | b-a \iff b \RA a \]

iii) transitivity: If \(a \RA b \) and \(b \RA c \) then is \(a \RA c \in S \)?

\[a \RA b \text{ and } b \RA c \iff 5 | a-b \text{ and } 5 | b-c \iff 5 | a-b+c = 5 | a-c \iff a \RA c \]

Equivalence classes:

\[\bar{0} = \{ 2 \cdot 5 | a, 2 \cdot 5 | a-1, \ldots, 2 \cdot 5 | a-24 \} \]

\[\bar{1} = \{ 2 \cdot 5 | a, 2 \cdot 5 | a-1, \ldots, 2 \cdot 5 | a-24 \} \]

\[\bar{2} = \{ 2 \cdot 5 | a, 2 \cdot 5 | a-1, \ldots, 2 \cdot 5 | a-24 \} \]

\[\bar{3} = \{ 2 \cdot 5 | a, 2 \cdot 5 | a-1, \ldots, 2 \cdot 5 | a-24 \} \]

\[\bar{4} = \{ 2 \cdot 5 | a, 2 \cdot 5 | a-1, \ldots, 2 \cdot 5 | a-24 \} \]

Similar for \(3 \) and \(4 \).