Problem 1. Let D be an integral domain. If n is the characteristic of D then $n1 = 0$.

If $n = pq$ for primes p and q, then $(pq)1 = 0$.

Since $(pq)1 = (p1)(q1)$ (why?), we have $(p1)(q1) = 0$. Because D has no zero divisors either $p1 = 0$ or $q1 = 0$. But since p or q are both less than n this is a contradiction with our assumption that n is the characteristic.

Problem 2. $\mathbb{Z}_3[x] = \{a_nx^n + a + n - 1x^{n-1} + \ldots + a_0|a_i \in \mathbb{Z}_3\}$ is an infinite ring and its characteristic is 3.

Chapter 12 #1. Example of a finite non-commutative ring: Set of $k \times k$ matrices with entries from $\mathbb{Z}_n = \text{Mat}(k, \mathbb{Z}_n)$. There are n^{k^2} elements in this ring because there are k^2 entries and n choices for each entry. (multiplication principle!)

Example of an infinite non-commutative ring without unity: Set of $k \times k$ matrices with entries from $2\mathbb{Z} = \text{Mat}(k, 2\mathbb{Z})$

Chapter 12 #19. Let R be a ring. Prove that Center of $R = C = \{x \in R | rx = xr$ for all $x \in R\}$ is a subring of R.

1. $0 \in C$ so C is non-empty.

2. Let $a, b \in C$. (Need to prove $a - b \in R$).

Let $r \in R$. $r(a - b) = ra - rb = ar - br = (a - b)r$. The first equality holds by distributivity, the second by the assumption that a and b are in the center, and the third by distributivity again. So we get that $a - b$ commutes with any $r \in R$ hence is in the center, proving that C is a subgroup under addition.

3. Let $a, b \in C$. (Need to prove $ab \in R$).

Let $r \in R$. $r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r$. These equalities hold by associativity of multiplication and our assumption that a and b are in the center. So we get that ab commutes with any $r \in R$ hence is in the center, proving C is closed under multiplication.

Chapter 12 #22. Let R be a group with unity and let $U(R)$ denote the set of units of R. Prove that $U(R)$ is a group under multiplication.

1. $1 \in U(R)$ so $U(R)$ is non-empty.

2. Let $a, b \in U(R)$. Then a and b have multiplicative inverses in R, a^{-1} and b^{-1} respectively. (Need to prove $ab \in U(R)$).
Then \((ab)(b^{-1}a^{-1}) = a(b(b^{-1})a^{-1} = a1a^{-1} = 1\). Similarly \((b^{-1}a^{-1})(ab) = 1\). This proves that
b^{-1}a^{-1}\) is the multiplicative inverse of \(ab\). Hence \(ab\) is in \(U(R)\).

3. If \(a \in U(R)\) then obviously its inverse is also invertible and hence in \(U(R)\)
The three steps above prove that \(U(R)\) is a group under multiplication of \(R\).

Chapter 12 #23. Determine \(U(\mathbb{Z}_i)\).
An element \(x + yi \in \mathbb{Z}_i\) is invertible if there exists \(a + bi \in \mathbb{Z}_i\) such that \((x + yi)(a + bi) = 1\).

Consider this equation in the bigger ring (in fact field) \(\mathbb{C}\). Then the multiplicative inverse of
\(x + yi\) would be \(\frac{1}{x + yi} = \frac{x - yi}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i\). Solutions have integer components (as desired)
if \(\frac{x}{x^2 + y^2}\) and \(\frac{y}{x^2 + y^2}\) are both integers. This happens only when \(x^2 + y^2 = 1\). So possibilities are:
\(x = 1, y = 0, x = -1, y = 0, x = 0, y = 1,\) and \(x = 0, y = -1\). So invertible elements in \(\mathbb{Z}_i\) are
\(\pm 1, \pm i\).

Chapter 13 #8. Describe all zero-divisors and units of \(\mathbb{Z} \otimes \mathbb{Q} \otimes \mathbb{Z}\).

Zero divisors:
An element of the form \((0, r, a)\) with \(r \in \mathbb{Q}\) and \(a \in \mathbb{Z}\) is a zero divisor because \((0, r, a)(1, 0, 0) = (0, 0, 0)\)
An element of the form \((a, 0, b)\) with \(a, b \in \mathbb{Z}\) is a zero divisor because \((a, 0, b)(0, 1, 0) = (0, 0, 0)\)
An element of the form \((a, r, 0)\) with \(r \in \mathbb{Q}\) and \(a \in \mathbb{Z}\) is a zero divisor because \((a, r, 0)(0, 0, 1) = (0, 0, 0)\)

Units:
\(U = \{(a, b, c) \in \mathbb{Z} \otimes \mathbb{Q} \otimes \mathbb{Z} | a = \pm 1, b \neq 0, c = \pm 1\}\). (What is the inverse?)

Chapter 13 #12. Consider 3 and 4 in \(\mathbb{Z}_{12}\). Since \(3 \times 4 = 0\) in \(\mathbb{Z}_{12}\) they are both zero-divisors
however \(7 = 3 + 4\) is not zero and not a zero divisor in \(\mathbb{Z}_{12}\).

Chapter 13 #14. Let \(R\) be a ring with 1 and \(N = \{a \in R | a^n = 0 \text{ for some } n \in \mathbb{Z}^+\}\).

1. \(0 \in N\) so \(N\) is non-empty.

2. Let \(a, b \in N\). (Need to prove \(a - b \in N\).)
Then there exists \(m, n \in \mathbb{Z}^+\) such that \(a^n = 1\) and \(b^m = 1\).
Then
\[
(a - b)^{m+n} = a^{m+n} - \binom{m+n}{1} a^{m+n-1} b + \binom{m+n}{2} a^{m+n-2} b^2 + \ldots \\
+ (-1)^m \binom{m+n}{m+n-n-m} a^n b^m + (-1)^{m+1} \binom{m+n}{m+n-m-1} a^{n-1} b^{m+1} + \ldots \\
+ (-1)^{m+n-1} \binom{m+n}{m+n-m-n+1} a b^{m+n-1} + (-1)^{m+n} b^{m+n}
\]
Notice that each term in the expansion has either a^n or b^m as a factor and hence is zero. Therefore $(a - b)^{m+n} = 0$ and is in N.

3. Let $a, b \in N$ and R be commutative. (Need to prove $ab \in N$.) Let m, n be as in part 2. Then $(ab)^{mn} = a^{mn}b^{mn} = (a^n)^m = (b^m)^n = 0$. So $ab \in N$ and N is closed under multiplication.

Chapter 13 #18. $1 + 3i$ and $1 + 2i$ are in $\mathbb{Z}_5[i]$ and $(1 + 3i)(1 + 2i) = -5 + 5i$ which is 0 in $\mathbb{Z}_5[i]$.

Chapter 13 #22. Let $R = \{f|f : \mathbb{R} \to \mathbb{R}$ is a function $\}$
We know R is a commutative ring under function addition and multiplication.

a. Zero divisors of R: $f(x)$ is a zero divisor of R iff $f(x) = 0$ has a solution in \mathbb{R}. Suppose $f(x)$ is a non-zero function and $f(c) = 0$ for some $c \in \mathbb{R}$. Define

$$g(x) = \begin{cases} 0 & \text{if } x \neq c \\ 1 & \text{if } x = c \end{cases}$$

Then $f(x)g(x) = 0$ for all $x \in R$ and neither $f(x)$ nor $g(x)$ is zero.

b. Nilpotent elements of R: The only nilpotent element of R is the function zero because $(f(x))^n = 0$ holds iff $f(x) = 0$

c. Every non-zero element is a zero divisor or a unit: Let $f(x)$ be in R. As discussed in part 1 if $f(x) = 0$ for some $x \in R$, then $f(x)$ is a zero divisor. Otherwise we can define the multiplicative inverse of $f(x)$ to be $\frac{1}{f(x)}$.

Chapter 13 #25. Let R be a ring with unity 1 and product of any two non-zero elements is non-zero in R.

If $ab = 1$ then $(ab)a = a$. By associativity of multiplication and cancelation of addition this implies $a(ba) - a = 0$. By distributivity we get $a(ba - 1) = 0$. By the assumption on the ring, either $a = 0$ or $ba - 1 = 0$. Since $ab = 1$, a cannot be zero so $ba - 1 = 0$, that is $ba = 1$.

Chapter 13 #38. Let R be a commutative ring and ab be a zero-divisor. Then there exists $x \in R$ such that $x \neq 0$ and $(ab)x = 0$. Then by associativity $a(bx)=0$.

If $bx \neq 0$ then a is a zero-divisor. If $bx = 0$ then b is a zero divisor.

(We need R is commutative because otherwise we would have to distinguish between left zero-divisor and right-zero divisor).