1. a) State the definition of an open set.
 b) Must the intersection of a countable collection of open sets be open? Either give me a counterexample or a proof.
 c) Must the union of a countable collection of open sets be open? Either give me a counterexample or a proof.

2. a) State the Heine-Borel theorem.
 b) Give two examples of a non-compact set: one which meets the first of the criteria for compactness in Heine-Borel, but not the second, and one which meets the second but not the first.
 c) For each of your sets from part b), give a sequence which contains no subsequence which converges to a point of the set.

3. a) Define uniform continuity.
 b) Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) which is continuous, but not uniformly continuous. Explain why it isn’t uniformly continuous.

4. a) Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) which is continuous only at \(x = 0, x = 1, \) and \(x = 2. \)
 b) Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) which is continuous only at the irrational numbers.
 c) State a theorem about \(Df \) for a monotone functions \(f. \)
 d) Would it be possible to find examples of functions in parts a) and b) which were monotone? Explain.

5. Prove \(f(x) = x^2 \) is continuous at \(x = 1. \)

5. a) Give an example of a function \(f \) which is differentiable everywhere on \(\mathbb{R} \) whose derivative is discontinuous.
 b) Is there a function \(f \) which is differentiable on \(\mathbb{R} \) whose derivative has a jump discontinuity? Either give an example, or explain why not.

6. (Bonus) Construct a function which is discontinuous only at the dyadic rationals (recall: the dyadic rationals are rational numbers which can be written in the form \(\frac{a}{b} \) where \(b \) is a power of 2).