Homework # 10 - Math 149
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. On what line is the first error in the following? Let \(f(x) = 4x^2\).
a. Line 1.
b. Line 2.
c. Line 3.
d. Line 4.
e. Line 5.
2. On what line is the first error in the following? Let \(f(x) = x^3\).
3. Take the derivative of \(f(x) = \frac{1}{x^2}\) (Feel free to use the derivative rules).
a. \(f'(x) = \frac{-2}{x}\)
b. \(f'(x) = \frac{2}{x}\)
c. \(f'(x) = \frac{2}{x^3}\)
d. \(f'(x) = \frac{-2}{x^3}\)
e. \(f'(x) = 0\)
4. Take the derivative of \(f(x) = 3x^2 - 5x + 10\) (Feel free to use the derivative rules).
a. \(f'(x) = 6x - 5\)
b. \(f'(x) = 3x - 5\)
c. \(f'(x) = 2x^2 - 5x\)
d. \(f'(x) = 2x^2 - 5\)
e. \(f'(x) = 2x^2 - 4x + 10\)
5. Take the derivative of \(g(x) = 2^{-100}\) (Feel free to use the derivative rules).
a. \(g'(x) = (100) 2^{101}\)
b. \(g'(x) = (-100) 2^{-101}\)
c. \(g'(x) = (100) 2^{99}\)
d. \(g'(x) = (-100) 2^{-99}\)
e. \(g'(x) = 0\)
6. Take the derivative of \(h(x) = 2^{x}\) (Feel free to use the derivative rules).
a. \(h'(x) = 2^x\)
b. \(h'(x) = (\ln2)2^x\)
c. \(h'(x) = x2^{x-1}\)
d. \(h'(x) = x 1^{x-1}\)
e. \(h'(x) = 0\)