Randolph College
Department of Mathematics and Computer Science

 

Homework # 16 - Math 149


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

For questions 1, 2, and 3, consider the function \(f(x) = x^3-5x^2+7x\)

 

1.  On what interval(s) is the function \(f\) decreasing?

a.  \( (-\infty, 0)\)

b.  \( (1, \frac{7}{3})\)

c.  \( (1, 2)\)

d.  \( (1, \frac{5}{2})\)

e.  \( (\frac{5}{3}, \infty)\)

 

2.  On what interval(s) is the graph of the function \(f\) concave up?

a.  \( (0,\infty)\)

b.  \( (-\infty, 1), (\frac{7}{3}, \infty)\)

c.  \( (-\infty, 1), (2, \infty)\)

d.  \( (1, \frac{5}{2})\)

e.  \( (\frac{5}{3}, \infty)\)

 

3.  How many relative maxima does the function \(f\) have?

a.  None

b.  One

c.  Two

d.  Two and a half

e.  Three

 

4.  How many points of inflection does the function \(g(x) = x^4\) have?

a.  None

b.  One

c.  Two

d.  Two and a half

e.  Three