Homework # 17 - Math 149
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. Find \(\lim_{x \rightarrow \infty} \frac{x - 2x^2}{3x^2 - 4x + 5}\).
a. \(\frac{1}{2}\)
b. \(-\frac{2}{3}\)
c. \(\frac{1}{3}\)
d. \(\frac{2}{3}\)
e. \(0\)
For Questions 2, 3, and 4, let \(f(x) = \frac{1}{x^2 + 1}\)
2. Find the largest open interval(s) over which \(f\) is increasing.
a. \((-\infty, 0)\)
b. \((0, \infty)\)
c. \((-\infty, \infty)\)
d. \((-\infty, 1)\)
e. \((-1, \infty)\)
3. Find the largest open interval(s) over which \(f\) is concave down.
a. \((-\frac{1}{2}, \frac{1}{2})\)
b. \((-\frac{1}{2}, \infty)\)
c. \((-\infty, -\frac{1}{2}), (\frac{1}{2}, \infty)\)
d. \((-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})\)
e. \((-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})\)
4. Find the horizontal asymptote for \(y = f(x)\).
a. \(y = -1\)
b. \(y = 0\)
c. \(y = \frac{1}{2}\)
d. \(y = 1\)
e. There is no horizontal asymptote.