Homework # 19 - Math 149
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
For questions 1 through 3, compute the antiderivatives.
1. \(\int 3x + 4 dx\)
a. \(3 + c\)
b. \(3x^2 + 4x + c\)
c. \(\frac{3}{2}x^2 + 4x + c\)
d. \(3x^2 + 2x + c\)
d. \(\frac{3}{2}x^2 + 2x + c\)
2. \(\int (x + 1)(x + 2) dx\). (Hint: before you start taking a derivative, try a little algebra.)
a. \((\frac{1}{2}x^2 + x)(\frac{1}{2}x^2 + 2x) + c\)
b. \((\frac{1}{2}x^2 + 2x)(\frac{1}{2}x^2 + 4x) + c\)
c. \(2x + 3 + c\)
d. \(\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x + c\)
d. \(\frac{2}{3}x^3 + 3 x^2 + 2x + c\)
3. \(\int 3\sin x - \sec^2 x dx\).
a. \(3\cos x - \frac{1}{3} sec^3 x + c\)
b. \(-3\cos x - \frac{1}{3} sec^3 x + c\)
c. \(3\cos x - \tan x + c\)
d. \(-3\cos x - \tan x + c\)
d. \(cos^3 x - \tan x + c\)
4. If \(\int_0^5 f(x) dx = 10\), and \(\int_2^5 f(x) dx = 4\), find \(\int_0^2 f(x) dx\)
a. -4
b. 0
c. 4
d. 6
e. 8
5. Use geometry to evaluate the following integral \(\int_{-2}^3 \mid x \mid dx\)
a. \(\frac{15}{2}\)
b. \(\frac{13}{2}\)
c. \(\frac{9}{2}\)
d. \(\frac{1}{2}\)
e. \(\frac{-1}{2}\)
For questions 6 and 7, say a hot air balloon starts at an altitude of 100 m and is initially falling at a rate of 2 m/s. At time 0, the balloon operator fires the burner and the balloon accelerates upwards at a rate of 1 m/s\(^2\).
6. Find a formula for the vertical velocity, \(v\) of the balloon in m/s.
a. \(v(t) = 2t + 100\)
b. \(v(t) = t + 100\)
c. \(v(t) = t - 2\)
d. \(v(t) = 2t - 2\)
e. \(v(t) = 2t - 1\)
7. Find a formula for the height, \(h\) of the balloon in m.
a. \(h(t) = t^2 + 100t\)
b. \(h(t) = \frac{1}{2}t^2 + 100t + 100\)
c. \(h(t) = \frac{1}{2}t^2 + t + 100\)
d. \(h(t) = \frac{1}{2}t^2 - t + 100\)
e. \(h(t) = \frac{1}{2}t^2 - 2t + 100\)
8. Which one of the following represents a right hand sum for the function \(f(x) = 2^x\) between \(x = 0\) and \(x = 2\) with \(n = 4\) equal subintervals.
a. \((\frac{1}{2})(\sqrt{2}) + (\frac{1}{2})(2) + (\frac{1}{2})(2\sqrt{2}) + (\frac{1}{2})(4)\)
b. \((\frac{1}{4})(\sqrt{2}) + (\frac{1}{4})(2) + (\frac{1}{4})(2\sqrt{2}) + (\frac{1}{4})(4)\)
c. \((\frac{1}{4})(\sqrt{2}) + (\frac{1}{2})(2) + (\frac{3}{4})(2\sqrt{2}) + (1)(4)\)
d. \((\frac{1}{2})(\sqrt{2}) + (1)(2) + (\frac{3}{2})(2\sqrt{2}) + (2)(4)\)
e. \((\frac{1}{2})(\frac{1}{4}) + (\frac{1}{2})(1) + (\frac{1}{2})(\frac{9}{4}) + (\frac{1}{2})(4)\)
9. Consider the area under the curve \(y = f(x) = 1 - x^2\) between \(x = 0\) and \(x = 1\). (It will help you answer this question if you draw the curve first.)
a. The left-hand-sum with \(n=4\) subintervals is an underestimate of the true area under the curve.
b. The right-hand-sum with \(n=4\) subintervals is an underestimate of the true area under the curve.
c. The right-hand-sum with \(n=4\) subintervals is an overestimate of the true area under the curve.
d. None of the above are true.