Randolph College
Department of Mathematics and Computer Science

 

Homework # 20 - Math 149


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

For questions 1 through 3, compute the antiderivatives.

1. \(\int 3x + 4 dx\)

a.  \(3 + c\)

b.  \(3x^2 + 4x + c\)

c.  \(\frac{3}{2}x^2 + 4x + c\)

d.  \(3x^2 + 2x + c\)

d.  \(\frac{3}{2}x^2 + 2x + c\)

 

2. \(\int (x + 1)(x + 2) dx\). (Hint: before you start taking a derivative, try a little algebra.)

a.  \((\frac{1}{2}x^2 + x)(\frac{1}{2}x^2 + 2x) + c\)

b.  \((\frac{1}{2}x^2 + 2x)(\frac{1}{2}x^2 + 4x) + c\)

c.  \(2x + 3 + c\)

d.  \(\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x + c\)

d.  \(\frac{2}{3}x^3 + 3 x^2 + 2x + c\)

 

3. \(\int 3\sin x - \sec^2 x dx\).

a.  \(3\cos x - \frac{1}{3} sec^3 x + c\)

b.  \(-3\cos x - \frac{1}{3} sec^3 x + c\)

c.  \(3\cos x - \tan x + c\)

d.  \(-3\cos x - \tan x + c\)

d.  \(cos^3 x - \tan x + c\)