Randolph College
Department of Mathematics and Computer Science

 

Homework # 22 - Math 149


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

1. Find the average value of the function \(f(x) = \sin(x)\) on the interval \([0,\pi]\).

a.  \(0\)

b.  \(\frac{\pi}{2}\)

c.  \(\frac{2}{\pi}\)

d.  \(\frac{\pi}{4}\)

e.  \(\frac{1}{\pi}\)

 

2. Find the indefinite integral \(\int 2^{\sin x} \cos x dx \)

a.  \(\frac{1}{\ln 2} 2^{\sin x} + c\)

b.  \(2^{\sin x} + c\)

c.  \(2^{\cos x} + c\)

d.  \(\frac{1}{\ln 2} 2^{\cos x} + c\)

e.  \({\ln 2} 2^{\cos x} + c\)

 

3. Evaluate the definite integral \(\int_2^4 3x^2 - 2x + 5 dx\)

a.  54

b.  56

c.  58

d.  60

e.  62

 

4. Evaluate the definite integral \(\int_0^2 2^x dx\)

a.  \(8\)

b.  \(\infty\)

c.  \(\frac{3}{\ln 2}\)

d.  \(\frac{8}{\ln 2}\)

e.  \(3\)

 

5. Evaluate the derivative \(\frac{d}{dx}(\int_0^x \sin^2(t) dt)\)

a.  \(2 sin(t)\)

b.  \(\frac{1}{3} sin^3(t)\)

c.  \(\frac{1}{3} sin^3(x)\)

d.  \(sin^2(x)\)

e.  \(0\)