Homework # 22 - Math 149
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. Find the average value of the function \(f(x) = \sin(x)\) on the interval \([0,\pi]\).
a. \(0\)
b. \(\frac{\pi}{2}\)
c. \(\frac{2}{\pi}\)
d. \(\frac{\pi}{4}\)
e. \(\frac{1}{\pi}\)
2. Find the indefinite integral \(\int 2^{\sin x} \cos x dx \)
a. \(\frac{1}{\ln 2} 2^{\sin x} + c\)
b. \(2^{\sin x} + c\)
c. \(2^{\cos x} + c\)
d. \(\frac{1}{\ln 2} 2^{\cos x} + c\)
e. \({\ln 2} 2^{\cos x} + c\)
3. Evaluate the definite integral \(\int_2^4 3x^2 - 2x + 5 dx\)
a. 54
b. 56
c. 58
d. 60
e. 62
4. Evaluate the definite integral \(\int_0^2 2^x dx\)
a. \(8\)
b. \(\infty\)
c. \(\frac{3}{\ln 2}\)
d. \(\frac{8}{\ln 2}\)
e. \(3\)
5. Evaluate the derivative \(\frac{d}{dx}(\int_0^x \sin^2(t) dt)\)
a. \(2 sin(t)\)
b. \(\frac{1}{3} sin^3(t)\)
c. \(\frac{1}{3} sin^3(x)\)
d. \(sin^2(x)\)
e. \(0\)