Randolph College
Department of Mathematics and Computer Science

 

Homework # 23 - Math 149


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

1. Find the indefinite integral \(\int \frac{x+1}{x^2 + 2x + 5} dx \)

a.  \(\frac{1}{2} \ln(x^2 + 2x + 5) + c\)

b.  \(\ln(x^2 + 2x + 5) + c\)

c.  \(\frac{\frac{1}{2}x^2 + x}{\frac{1}{3}x^3 + x^2 + 5x} + c\)

d.  \(\frac{1}{2}\frac{\frac{1}{2}x^2 + x}{\frac{1}{3}x^3 + x^2 + 5x} + c\)

e.  \(\frac{1}{2x + 2} + c\)

 

2. Find the indefinite integral \(\int x\sec^2(x^2) dx \)

a.  \(\tan(x^2) + c\)

b.  \(\frac{1}{2} \tan(x^2) + c\)

c.  \(\frac{1}{3} \sec^3(x^2) + c\)

d.  \(\frac{1}{3} \sec^3(x^3) + c\)

e.  \(\frac{1}{3} \sec^3(\frac{1}{3}x^3) + c\)