Homework # 2 - Math 1150
The problems on this homework must be done alone. The honor code is in effect.
You may submit the solutions twice, if you wish.
First Name: Last Name:
1. Find all extreme points of \(f(x) = \frac{\ln x}{x}\).
a. Maximum at \(x = 1\), no minimum.
b. Minimum at \(x = 1\), no maximum.
c. Maximum at \(x = 1\), minimum at \(x = e\).
d. Maximum at \(x = e\), no minimum.
e. Maximum at \(x = 3\), minimum at \(x = 0\).
2. Compute the indefinite integral \( \int \frac{x+1}{x^2+2x+5} dx\).
a. \( \ln(x^2+2x+5) + c\)
b. \( \frac{1}{2}\ln(x^2+2x+5) + c\)
c. \( \frac{(\frac{1}{2})x^2 + x}{(\frac{1}{3})x^3 + x^2 + 5x} + c\)
d. \( (x+1)\ln(x^2+2x+5) + c\)
e. \( \frac{-x^2 - 2x - 1}{(x^2 + 2x +5)^2} + c\)
3. Compute the indefinite integral \( \int \frac{1}{x\ln(x^3)} dx\).
a. \( \frac{1}{3} \ln(\ln(x^3)) + c\)
b. \( \frac{1}{2} \ln(\ln(x^3)) + c\)
c. \( \ln(\ln(x^3)) + c\)
d. \( \frac{3x^2}{\ln(x^3)} + c\)
e. \( \frac{3x^2}{\ln(3x^2)} + c\)
4. Compute the indefinite integral \( \int \frac{x^4 + x^3 + 2x^2 + x + 1}{x^2 + 1} dx \).
a. \( 2x + \ln (x^2 + 1) + c \)
b. \( 2x + \frac{1}{2}\ln (x^2 + 1) + c \)
c. \( 2x + \frac{1}{3}\ln (x^2 + 1) + c \)
d. \( x^2 + x + 1 + c \)
e. \( \frac{1}{3} x^3 + \frac{1}{2} x^2 + x + c\)
5. If \( f(x) = (x - 1)^3\), find \(f^{-1}(x)\).
a. \( f^{-1}(x) = \sqrt[3]{x-1} \)
b. \( f^{-1}(x) = \sqrt[3]{x+1} \)
c. \( f^{-1}(x) = \sqrt[3]{x}-1 \)
d. \( f^{-1}(x) = \sqrt[3]{x}+1 \)
e. \( f(x)\) has no inverse.