Homework # 3 - Math 1150
The problems on this homework must be done alone. The honor code is in effect.
You may submit the solutions twice, if you wish.
First Name: Last Name:
1. Compute the indefinite integral ∫ (ex + e-x)/(e-x - ex)dx
a. ln(e-x - ex ) + c
b. -ln(e-x - ex ) + c
c. ln(ex + e-x ) + c
d. (ex - e-x)/(-e-x - ex) + c
e. (ex - e-x)/(e-x + ex) + c
2. Compute the indefinite integral ∫ 2 (2^x + x) dx.
a. 2(2^x) + c
b. (1/ln2) 2(2^x) + c
c. (1/(ln2)2) 2(2^x) + c
d. (1/(ln2)3) 2(2^x) + c
e. (1/(ln2)4) 2(2^x) + c
3. Of the functions \(f(x) = x^3\), \(g(x) = x^3 - 3x\), \(h(x) = x^3 + 3x\), which one(s) is/are invertible?
a. Only \(f\)
b. \(f\) and \(g\)
c. \(f\) and \(h\)
d. All of them
e. None of them