Randolph College
Department of Mathematics and Computer Science

 

Homework # 3 - Math 1150


The problems on this homework must be done alone.  The honor code is in effect.

You may submit the solutions twice, if you wish.

 First Name:  Last Name:

 

1.  Compute the indefinite integral   ∫ (ex + e-x)/(e-x - ex)dx

a.  ln(e-x - ex ) + c

b.  -ln(e-x - ex ) + c

c.  ln(ex + e-x ) + c

d.  (ex - e-x)/(-e-x - ex) + c

e.  (ex - e-x)/(e-x + ex) + c

 

2.  Compute the indefinite integral  ∫ 2 (2^x + x) dx.

a.  2(2^x) + c

b.  (1/ln2) 2(2^x) + c

c.  (1/(ln2)2) 2(2^x) + c

d.  (1/(ln2)3) 2(2^x) + c

e.  (1/(ln2)4) 2(2^x) + c

 

3.  Of the functions \(f(x) = x^3\), \(g(x) = x^3 - 3x\), \(h(x) = x^3 + 3x\), which one(s) is/are invertible?

a.  Only \(f\)

b.  \(f\) and \(g\)

c.  \(f\) and \(h\)

d.  All of them

e.  None of them