Homework # 4 - Math 1150
The problems on this homework must be done alone. The honor code is in effect.
You may submit the solutions twice, if you wish.
First Name: Last Name:
1. Compute the indefinite integral \( \int 5^{-x}\) dx
a. \( \frac{5^{-x+1}}{-x+1} + c \)
b. \( \frac{5^{x-1}}{x-1} + c \)
c. \( \frac{5^{-x}}{\ln 5} + c\)
d. \( -\frac{5^{-x}}{\ln 5} + c\)
e. \( -x 5^{-x-1} + c\)
2. Find the area under the curve \( y = 2^x\), above the \(x\)-axis, between \( x = 0\) and \( x = 1 \).
a. \( \frac{3}{2}\)
b. \( \frac{1}{\ln 2}\)
c. \( \frac{2}{\ln 2}\)
d. \( \frac{\sqrt{5}}{2}\)
e. \( \frac{\sqrt{5}}{3}\) + c
a. \( \frac{x}{\sqrt{1+x^2}}\)
b. \( \frac{x}{\sqrt{1-x^2}}\)
c. \( \frac{\sqrt{1+x^2}}{x}\)
d. \( \frac{\sqrt{1+x^2}}{x}\)
e. \( \frac{1}{\sqrt{x}}\)
4. Find the derivative: \(\frac{d}{dx} (\arctan(2x))\)
a. \( \frac{1}{1+2x^2}\)
b. \( \frac{1}{1+4x^2}\)
c. \( \frac{2}{1+2x^2}\)
d. \( \frac{2}{1+4x^2}\)
e. \( \frac{4}{1+2x^2}\)