Randolph College
Department of Mathematics and Computer Science

 

Homework # 4 - Math 1150


The problems on this homework must be done alone.  The honor code is in effect.

You may submit the solutions twice, if you wish.

 First Name:  Last Name:

 

1.  Compute the indefinite integral  \( \int 5^{-x}\) dx

a.  \( \frac{5^{-x+1}}{-x+1} + c \)

b.  \( \frac{5^{x-1}}{x-1} + c \)

c.  \( \frac{5^{-x}}{\ln 5} + c\)

d.  \( -\frac{5^{-x}}{\ln 5} + c\)

e.  \( -x 5^{-x-1} + c\)

 

2.  Find the area under the curve \( y = 2^x\), above the \(x\)-axis, between \( x = 0\) and \( x = 1 \).

a.  \( \frac{3}{2}\)

b.  \( \frac{1}{\ln 2}\)

c.  \( \frac{2}{\ln 2}\)

d.  \( \frac{\sqrt{5}}{2}\)

e.  \( \frac{\sqrt{5}}{3}\) + c

 

3.  Simplify the function \(f(x) = \sin(\tan^{-1} x)\).

a.  \( \frac{x}{\sqrt{1+x^2}}\)

b.  \( \frac{x}{\sqrt{1-x^2}}\)

c.  \( \frac{\sqrt{1+x^2}}{x}\)

d.  \( \frac{\sqrt{1+x^2}}{x}\)

e.  \( \frac{1}{\sqrt{x}}\)

 

4.  Find the derivative: \(\frac{d}{dx} (\arctan(2x))\)

a.  \( \frac{1}{1+2x^2}\)

b.  \( \frac{1}{1+4x^2}\)

c.  \( \frac{2}{1+2x^2}\)

d.  \( \frac{2}{1+4x^2}\)

e.  \( \frac{4}{1+2x^2}\)