Randolph College
Department of Mathematics and Computer Science

 

Homework # 9 - Math 1150


The problems on this homework must be done alone.  The honor code is in effect.

You may submit the solutions twice, if you wish.

 First Name:  Last Name:

 

1. Evaluate $$\lim_{x\rightarrow 0+} (1+ 2x)^{\frac{1}{x}}$$

a.  \(1\)

b.  \(e\)

c.  \(2e\)

d.  \(e^2\)

e.  \(\infty\)

 

2. Evaluate \( \int_1^{\infty} \frac{1}{\sqrt{x^3}} dx\)

a.  \(0\)

b.  \(\frac{1}{2}\)

c.  \(1\)

d.  \(2\)

e.  The integral diverges.

 

3. Evaluate $$ \lim_{x\rightarrow 1} \frac{\ln x}{2x - 2}$$

a.  \(0\)

b.  \(\frac{1}{2}\)

c.  \(1\)

d.  \(2\)

e.  \(\infty\)

 

4. Evaluate $$\int_0^1 \frac{1}{\sqrt{x}} dx$$

a.  \(0\)

b.  \(\frac{1}{2}\)

c.  \(1\)

d.  \(2\)

e.  \(\infty\)