Homework # 9 - Math 1150
The problems on this homework must be done alone. The honor code is in effect.
You may submit the solutions twice, if you wish.
First Name: Last Name:
1. Evaluate $$\lim_{x\rightarrow 0+} (1+ 2x)^{\frac{1}{x}}$$
a. \(1\)
b. \(e\)
c. \(2e\)
d. \(e^2\)
e. \(\infty\)
2. Evaluate \( \int_1^{\infty} \frac{1}{\sqrt{x^3}} dx\)
a. \(0\)
b. \(\frac{1}{2}\)
c. \(1\)
d. \(2\)
e. The integral diverges.
3. Evaluate $$ \lim_{x\rightarrow 1} \frac{\ln x}{2x - 2}$$
4. Evaluate $$\int_0^1 \frac{1}{\sqrt{x}} dx$$