Homework # 4 - Math 241
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
For questions 1 through 5, let $$A = \left[\begin{array}{ccccc} 1 & 2 & 1 & 1 & -2\\ 2 & 4 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 & 5\end{array}\right]$$
1. Find a basis for Nul(\(A\)).
a. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\-1\\2\\1 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\-1 \end{array}\right]\right\}$$
d. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\3\\1\\0\\-2 \end{array}\right]\right\}$$
2. Find a basis for Col(\(A\))
a. $$\left\{ \left[ \begin{array}{c} 1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 0\\1\\0\\0 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} 2\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\-1\\2\\0 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} 2\\4\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2 \end{array}\right]\right\}$$
d. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2 \end{array}\right]\right\}$$
e. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0 \end{array}\right], \left[ \begin{array}{c} 2\\4\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} -2\\-1\\-2\\5 \end{array}\right]\right\}$$
3. Find a basis for Row(\(A\)). (Take the non-zero rows of your reduced-echelon form matrix)
a. $$\left\{ \left[ \begin{array}{c} 1\\2\\1\\1\\-2 \end{array}\right], \left[ \begin{array}{c} 2\\4\\1\\0\\-1 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\0\\1\\-2 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\0\\1\\2 \end{array}\right]\right\}$$
4. What is Rank(\(A\))? (This is just the number of vectors in a basis for the column space.)
a. 2
b. 3
c. 4
5. Is \(A\) invertible?
a. Yes.
b. Go jump in the lake.
6. Say \(A\) is a 5 by 8 matrix. If the dimension of Row(A) is 2, what is the dimension of Col(A)?
c. 5
d. 6
7. Say \(A\) is a 5 by 8 matrix. If the dimension of Row(A) is 2, what is the dimension of Nul(A)?
8. Find all the eigenvalues of the matrix $$A = \left[\begin{array}{cc} 1 & 2\\ 2 & 4\end{array}\right]$$
a. 0 and 5
b. 0 and 1 and 2
c. 1 and 5
d. 1 and 2 and 4
For questions 9 through 11, let $$A = \left[\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 2 & 0\\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & -2\end{array}\right]$$
9. Find the eigenvalues for \(A\).
a. 1, 2, 3, 4
b. 0, 1, 2, 3, 4
c. -2, 0, 1, 2, 3, 4
d. -2, 1, 2
e. 0, 1, 2
10. Describe the eigenspace for \(\lambda = 1\).
a. A line through the origin
b. Two lines through the origin
c. A plane through the origin
d. All of \(R^4\)
e. Just the zero vector
11. Which of the standard unit basis vectors are eigenvectors for \(A\).?
a. Just \(e_1\)
b. Just \(e_4\)
c. All of them.
d. None of them.
12. Let \(\left[\begin{array}{cc} 1 & 1 \\ 0 & 1\end{array}\right]\). Is \(A\) diagonalizable?
b. No, because it has too few eigenvalues.
c. No, because there aren't two linearly independent eigenvectors.
13. Let \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1\end{array}\right]\). Is \(A\) diagonalizable?
14. Say \(T:{\bf R}^2 \rightarrow {\bf R}^2\) is the linear transformation which reflects the plane over some line through the origin (you don't need to know which line, and you don't need to know the 2 by 2 matrix \(A\) such that \(T(\vec{x}) = A\vec{x}\)). What are the eigenvalues of T (Just think about it)?
a. There are none
b. Only 1
c. Only -1
d. 1 and -1
c. 1 and 0
15. Say \(T:{\bf R}^2 \rightarrow {\bf R}^2\) is the linear transformation which rotates the plane by 45 degrees around the origin. What are the eigenvalues of T (Just think about it)?
16. Say \(T:{\bf R}^2 \rightarrow {\bf R}^2\) is the linear transformation which rotates the plane by 180 degrees around the origin. What are the eigenvalues of T (Just think about it)?
d. 0 and 1
17. Say \(T:{\bf R}^3 \rightarrow {\bf R}^3\) is the linear transformation which rotates three dimensional space by 45 degrees around some line through the origin. What are the eigenvalues of T (Just think about it)?
18. Consider the triangle with vertices A(1,2,3), B(5,5,3), and C(3,4,4). Find cos\(\theta\) where \(\theta\) is the smallest angle in the triangle.
a. -14/15
b. -1/15
c. 0
d. 1/15
e. 14/15