Homework # 7 - Math 241
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
For questions 1 through 5, let $$A = \left[\begin{array}{ccccc} 1 & 2 & 1 & 1 & -2\\ 2 & 4 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 & 5\end{array}\right]$$
1. Find a basis for Nul(\(A\)).
a. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\-1\\2\\1 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\-1 \end{array}\right]\right\}$$
d. $$\left\{ \left[ \begin{array}{c} -2\\1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\3\\1\\0\\-2 \end{array}\right]\right\}$$
2. Find a basis for Col(\(A\))
a. $$\left\{ \left[ \begin{array}{c} 1\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 0\\1\\0\\0 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} 2\\0\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\-1\\2\\0 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} 2\\4\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2 \end{array}\right]\right\}$$
d. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 1\\0\\1\\-2 \end{array}\right]\right\}$$
e. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0 \end{array}\right], \left[ \begin{array}{c} 2\\4\\0\\0 \end{array}\right], \left[ \begin{array}{c} 1\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} -2\\-1\\-2\\5 \end{array}\right]\right\}$$
3. Find a basis for Row(\(A\)). (Take the non-zero rows of your reduced-echelon form matrix)
a. $$\left\{ \left[ \begin{array}{c} 1\\2\\1\\1\\-2 \end{array}\right], \left[ \begin{array}{c} 2\\4\\1\\0\\-1 \end{array}\right]\right\}$$
b. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\0\\1\\-2 \end{array}\right]\right\}$$
c. $$\left\{ \left[ \begin{array}{c} 1\\2\\0\\0\\-1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\1\\0\\1 \end{array}\right], \left[ \begin{array}{c} 0\\0\\0\\1\\2 \end{array}\right]\right\}$$
4. What is Rank(\(A\))? (This is just the number of vectors in a basis for the column space.)
a. 2
b. 3
c. 4
5. Is \(A\) invertible?
a. Yes.
b. Go jump in the lake.