Homework # 1 - Math 2250
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
In questions 1 through 6, explain what these are.
1. \(3x^2 + 3y^2 = 12\)
a. An ellipse centered at (0,0) with x-intercepts x = 3, x = -3, and y-intercepts y = 1, y = -1.
b. A hyperbola with asymptotes y = x, and y = -x
c. A circle of radius 2 centered at (0, 0)
d. A circle centered at (-1, 1)
e. A hyperbola with asymptotes x = 0 and y = 0
2. \(x^2 + 9y^2 = 9\)
3. \((x+1)^2 + (y-1)^2 = 1\)
4. \(y^2 - x^2 = 1\)
5. \(xy = 1\)
6. \(x^2 + 2x + y^2 - 2y + 1 = 0\)
In the following two problems, convert from polar coordinates to cartesian coordinates.
7. \((3, \frac{\pi}{6})\)
a. \((2, 1)\)
b. \((\frac{3\sqrt{3}}{2}, \frac{3}{2})\)
c. \((\frac{3}{2}, \frac{3\sqrt{3}}{2})\)
d. \((3, 0)\)
e. \((0, 3)\)
8. \(r = 5\)
a. \((3, 4)\)
b. \(x = 3\)
c. \(y = 4\)
d. \(x^2 + y^2 = 5\)
e. \(x^2 + y^2 = 25\)