Homework # 10 - Math 250
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
For questions 1 and 2, consider the function \( f(x, y) = \frac{x}{y} + e^{xy^2}\)
1. \(f_x(x,y) = \)
a. \(\frac{1}{y} + y^2 e^{xy^2}\)
b. \(\frac{x}{y^2} + 2xy e^{xy^2}\)
c. \(\frac{1}{y} + y^2 e^{y^2}\)
d. \(\frac{x}{y^2} + 2xy e^{2xy}\)
e. \(\frac{1}{y} + 2y e^{2xy}\)
2. \(f_y(x,y) = \)
For questions 3 through 7, consider the limit $$ \lim_{(x,y)\rightarrow(0,0)}\frac{x^2y}{x^4+y^2}$$
3. Evaluate the limit along the x-axis
a. \(0\)
b. \(\frac{1}{4}\)
c. \(\frac{1}{2}\)
d. \(1\)
e. DNE
4. Evaluate the limit along the y-axis
5. Evaluate the limit along the line \(y = x\)
6. Evaluate the limit along the parabola \(y = x^2\)
7. What is the value of the original limit?
8. Describe the level set for the function \(z = f(x, y) = xy\) at height \(z = 0\).
a. A hyperbola opening in quadrants 1 and 3.
b. A hyperbola opening in quadrants 2 and 4.
c. The x and the y axes.
d. A circle of radius 1 centered at the origin.
e. A parabola opening on the positive y-axis.
9. Describe the level set for the function \(z = f(x, y) = xy\) at height \(z = 1\).