Homework # 12 - Math 250
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. Compute the gradient of the function \(f(x,y) = x e^{\frac{y}{x}}\)
a. \( \nabla f(x,y) = \langle (ye^{\frac{y}{x}}, \frac{1}{x}e^{\frac{y}{x}}\rangle \)
b. \( \nabla f(x,y) = \langle (1-\frac{y}{x})e^{\frac{y}{x}}, e^{\frac{y}{x}}\rangle \)
c. \( \nabla f(x,y) = \langle (y e^{\frac{y}{x}}, x e^{\frac{y}{x}}\rangle \)
d. \( \nabla f(x,y) = \langle (\frac{y}{x}e^{\frac{y}{x}}, x e^{\frac{y}{x}}\rangle \)
e. \( \nabla f(x,y) = \langle (-\frac{x}{y})e^{\frac{y}{x}}, e^{\frac{y}{x}}\rangle \)
2. If the equation \(\sin(xy) + \cos(yz) + xz = 4\) implicitly defines \(z\) as a function of \(x\) and \(y\), find \(\frac{\partial z}{\partial x}\).
a. \(\frac{y\cos(xy)+z}{y\sin(yz)+x}\)
b. \(-\frac{y\cos(xy)+z}{y\sin(yz)+x}\)
c. \(\frac{(x+y)\cos(xy)+z}{(y+z)\sin(yz)+x}\)
d. \(-\frac{(x+y)\cos(xy)+z}{(y+z)\sin(yz)+x}\)
e. \(-\frac{(x+y)\cos(xy)+z}{(y+z)\sin(yz)+x+z}\)