Randolph College
Department of Mathematics and Computer Science

 

Homework # 17 - Math 250


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

1.  Integrate \( \int\int_R x dA\) where \(R = \{(x,y): x^2 + y^2 \leq 1\). (If you think about this, you can avoid a lot of work.)

a.  \(-\pi\)

b.  \(-\pi / 2\)

c.  0

d.  \(\pi / 2\)

e.  \(\pi\)

 

2.  Integrate \( \int\int_R 1 dA\) where \(R = \{(x,y): x^2 + y^2 \leq 1, x\geq 0 \). (Again, if you think about this, you can avoid a lot of work.)

a.  \(-\pi\)

b.  \(-\pi / 2\)

c.  0

d.  \(\pi / 2\)

e.  \(\pi\)

 

3.  Integrate \( \int\int_R x + 2 dA\) where \(R = \{(x,y): x^2 + y^2 \leq 1\). (Again, if you think about this, you can avoid a lot of work.)

a.  \(-2\pi\)

b.  \(-\pi / 2\)

c.  0

d.  \(\pi / 2\)

e.  \(2\pi\)

 

4.  Integrate \( \int\int_R e^{x^2+y^2} dA\) where \(R = \{(x,y): x^2 + y^2 \leq 1\}\).

a.  \(\frac{\pi}{2}(e - 1)\)

b.  \(\pi(e - 1)\)

c.  \(\frac{\pi e}{2}\)

d.  \(\pi e\)

e.  \(\frac{\pi e}{3}\)

 

5.  Find the volume of the solid inside the sphere \(x^2+y^2+z^2 \leq 4\), inside the cylider \( x^2 + y^2 \leq 1\), and above the xy-plane. (Hint: use the cylinder to get the 2-D region over which to integrate.)

a.  \(\frac{2\pi}{3}(8-3\sqrt{3})\)

b.  \(\frac{\pi}{2}(8-3\sqrt{3})\)

c.  \(\frac{2\pi}{5}\)

d.  \(\frac{2\pi}{5}(8-3\sqrt{3})\)

e.  \(\frac{\pi}{5}(8-3\sqrt{3})\)

 

In the next three problems, use the laminum on the region \(R = \{(x,y): x+y \leq 1, x\geq 0, y \geq 0\}\), where distance is measured in meters, with density function \(\rho(x,y) = x + y + 1\) kg/m. (I highly recommend that you sketch this region for yourself.)

6.  Find the total mass of this laminum.

a.  \(\frac{1}{6}\) kg

b.  \(\frac{1}{2}\) kg

c.  \(\frac{2}{3}\) kg

d.  \(\frac{5}{6}\) kg

e.  \(1\) kg

 

7.  Find the x-coordinate of the center of mass \(\overline{x}\).

a.  \(\frac{1}{4}\) m

b.  \(\frac{3}{10}\) m

c.  \(\frac{7}{20}\) m

d.  \(\frac{2}{5}\) m

e.  \(\frac{9}{20}\) m

 

8.  Find the y-coordinate of the center of mass \(\overline{y}\). (If you think about the region and the density function, you can save yourself some work with this one.)

a.  \(\frac{1}{4}\) m

b.  \(\frac{3}{10}\) m

c.  \(\frac{7}{20}\) m

d.  \(\frac{2}{5}\) m

e.  \(\frac{9}{20}\) m