Randolph College
Department of Mathematics and Computer Science

 

Homework # 18 - Math 250


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


 

1.  Find the surface area of the surface given by \(z = 2x + 2y + 5\) over the region \(R = \{(x,y): x^2 + y^2 \leq 1, y\geq 0\}\).

a.  \(\frac{\pi}{2}\)

b.  \(\pi\)

c.  \(\frac{3 \pi}{2}\)

d.  \(2\pi\)

e.  \(\frac{5\pi}{2}\)

 

2.  Find the surface area of the surface given by \(z = \sqrt{1 - x^2 - y^2}\) over the region \(R = \{(x,y): x^2 + y^2 \leq 1\}\).

a.  \(\frac{\pi}{2}\)

b.  \(\pi\)

c.  \(\frac{3 \pi}{2}\)

d.  \(2\pi\)

e.  \(\frac{5\pi}{2}\)

 

3.  Find the total mass of the solid where \(0 \leq x \leq 3\), \(0 \leq y \leq 2\), \(0 \leq z \leq 1\) where distance is measured in m, with density function \(\rho(x,y,z) = xyz + 1\).

a.  \(\frac{21}{2}\) kg

b.  \(11\) kg

c.  \(\frac{23}{2}\) kg

d.  \(12\) kg

e.  \(\frac{25}{2}\) kg