Homework # 23 - Math 250
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. Evaluate \(\int_C x^2+y^2 ds\), where \(C:\vec{r}(t) = \langle \cos t, \sin t \rangle\), \(0 \leq t \leq 2\pi\) (If you think about this, you can save yourself some work).
a. 0
b. 1
c. 2
d. \(\pi\)
e. \(2\pi\)
2. Evaluate \(\int_C \langle e^x, xy \rangle \cdot d\vec{r}\), where \(C:\vec{r}(t) = \langle t^2, t \rangle\), \(0 \leq t \leq 1\)
a. \(e + \frac{1}{4}\)
b. \(e^2\)
c. \(e - \frac{3}{4}\)
d. \(e^2 + \frac{1}{4}\)
e. \(1\)
3. Evaluate \(\int_C \langle -y, x\rangle \cdot d\vec{r}\), where \(C:\vec{r}(t) = \langle \cos t, \sin t \rangle\), \(0 \leq t \leq 2\pi\) (If you think about this, you can save yourself some work).
a. \(-4\pi\)
b. \(-2\pi\)
c. 0
d. \(2\pi\)
e. \(4\pi\)
4. Describe the following surface \(S: \vec{r}(u,v) = \langle v\cos u, v\sin u, v\rangle\) where \(0 \leq u \leq 2\pi\), and \(0\leq v\leq 1\).
a. A finite circular cylinder
b. An infinite circular cylinder
c. A finite cone
d. An infinite cone
e. A hemisphere