Homework # 8 - Math 250
The problems on this homework must be done alone. The honor code is in effect.
First name: Last name:
1. Find the unit tangent vector to the curve \({\bf r}(t) = \langle 3te^t, \frac{4}{\ln 2} 2^t \rangle\) at \(t = 0\)
a. \({\bf T}(0) = \langle 0, 1 \rangle \)
b. \({\bf T}(0) = \langle 3, 4\rangle \)
c. \({\bf T}(0) = \langle 0, 1\rangle \)
d. \({\bf T}(0) = \langle \frac{3}{5}, \frac{4}{5} \rangle \)
e. \({\bf T}(0) = \langle \frac{1}{2}, \frac{\sqrt{3}}{2}\rangle \))
2. Find the principal unit normal vector to the curve \({\bf r}(t) = \cos(t^2), \sin(t^2) \rangle\) where \(t > 0\)?
a. \({\bf N}(t) = \langle -\cos(t^2), -\sin(t^2)\rangle \)
b. \({\bf N}(t) = \langle t^2\cos(t^2), t^2\sin(t^2)\rangle \)
c. \({\bf N}(t) = \langle -t^2\sin(t^2), t^2\cos(t^2)\rangle \)
d. \({\bf N}(t) = \langle \sin(t^2), \cos(t^2)\rangle \)
e. \({\bf N}(t) = \langle -t^2\sin(t^2), -t^2\cos(t^2)\rangle \)
3. Evaluate the indefinite integral. \(\int \langle t e^t, e^{-t} \rangle dt\)
a. \(\langle \frac{1}{2}t^2 e^t + c_1, -e^{-t} + c_2 \rangle \)
b. \(\langle \frac{1}{2}t^2 e^t + c_1, e^{-t} + c_2 \rangle \)
c. \(\langle te^t - e^t + c_1, -e^{t} + c_2 \rangle \)
d. \(\langle te^t + e^t + c_1, e^{-t} + c_2 \rangle \)
e. \(\langle te^t - e^t + c_1, -e^{-t} + c_2 \rangle \)
4. What does it mean if an object has a constant acceleration of \(\langle 0, 0\rangle \)?
a. The object is stopped.
b. The object is moving in a circle at constant speed.
c. The object is moving in a straight line at constant speed or is stopped.
d. The object is moving in a circle at constant speed or is stopped.
e. The object is moving in a circle at constant speed or a straight line at constant speed.