Math 250 – Spring 2003 Review For Exam III (April 23, 2003)

This exam will concentrate on section 13.1 through 14.1.

Integration of Scalar Functions

Single Integrals

$\int_{a}^{b} 1 \mathrm{dx}$	length of interval [a,b]	
$\int_a^b \sqrt{1 + [f'(x)]^2} \mathrm{dx}$	length of the curve $y = f(x)$ between	
	x = a and $x = b$	
$\int_{a}^{b} f(x) \mathrm{dx}$	area under the curve $y = f(x)$, above	
	the x-axis, between $x = a$ and $x = b$ (provided $f(x) \ge 0$ on [a,b])	
$m = \int_{a}^{b} \rho(x) \mathrm{dx}$	total mass of wire with density function ρ	
	between $x = a$ and $x = b$	
$\overline{x} = \frac{\int_{a}^{b} x\rho(x) \mathrm{d}x}{m}$	coordinate of center of mass of wire with density function ρ between $x = a$ and $x = b$	

Name:

Double Integrals

$\int \int_R 1 \mathrm{dA}$	area of region R
$\int \int_R \sqrt{1 + [f_x(x,y)]^2 + [f_y(x,y)]^2} dA$	surface area of the surface given by $z = f(x, y)$
	over the region R
$\int \int_R f(x,y) \mathrm{dA}$	volume under the surface $z = f(x, y)$, above the
	xy-plane, over the region R (provided $f(x, y) \ge 0$ on R)
$m = \int \int_R \rho(x, y) dA$	total mass of lamina with density function ρ
	over the region R
$\overline{x} = \frac{\int \int_R x \rho(x,y) \mathrm{dA}}{m}$	x coordinate of center of mass of lamina with density function ρ over the region R

Triple Integrals

$\int \int \int_Q 1 \mathrm{dV}$	volume of solid region Q
$\int \int \int_Q \sqrt{1 + [f_x(x, y, z)]^2 + [f_y(x, y, z)]^2 + [f_z(x, y, z)]^2} dV$	requires 4 dimensions to interpret geometrically
$\int \int \int_Q f(x,y,z) \mathrm{dV}$	requires 4 dimensions to interpret geometrically
$m = \int \int \int_Q \rho(x, y, z) \mathrm{dV}$	total mass of solid with density function ρ
	over the region Q
$\overline{x} = \frac{\int \int \int_Q x \rho(x,y,z) \mathrm{dV}}{m}$	x coordinate of center of mass of solid with densi function ρ over the region Q

Some other things from Chapter 13 you should practice:

Doing double integrals in polar coordinates.

Setting up a triple integral.

Converting a triple integral into either cylindrical or spherical coordinates.

Computing a Jacobian.

Stuff from section 14.1:

Be able to sketch a simple vector field in \mathbf{R}^2 .

State the definition of a conservative vector field.

Use the definition to decide whether or not a vector field is conservative. Be able to compute divergence and curl.

Understand when you may use Theorems 14.1 and 14.2 to determine whether or not a vector field is conservative, and be able to use them when appropriate.

Problem: Let $\mathbf{F}(x, y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle$.

a) Does $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$? b) Is **F** conservative?

c) Explain what is going on here.