Randolph College
Department of Mathematics and Computer Science

 

Homework # 6 - Math 328


The problems on this homework must be done alone.  The honor code is in effect.

 First name:   Last name:


1.  Consider the initial value problem \(y'' - y' - 2y = 0\), such that \(y(0) = 1\), \(y'(0) = 0\). Then, as \(x\rightarrow\infty\),

b.  \(y \rightarrow 0\)

b.  \(y \rightarrow +\infty\)

c.  \(y \rightarrow -\infty\)

d.  \(y \rightarrow 2\)

e.  The limit of y doesn't exist.

 

2.  Consider the initial value problem \(y'' - y' - 2y = 0\), such that \(y(0) = 1\), \(y'(0) = -1\). Then, as \(x\rightarrow\infty\)

b.  \(y \rightarrow 0\)

b.  \(y \rightarrow +\infty\)

c.  \(y \rightarrow -\infty\)

d.  \(y \rightarrow 2\)

e.  The limit of y doesn't exist.

 

3.   Write out and submit your solution for questions 1 and 2.

 

4.   If \(y_1(t) = t\) is a solution to \(t^2y''+2ty'-2y = 0\), find a second solution \(y_2(t)\) that is not a multiple of \(y_1(t)\) by using the method of reduction of order.

 

5.   Solve the following differential equations.

  a)   \(y'' - 6y' + 8y = 0\)

  b)   \(y'' - 6y' + 9y = 0\)

  c)   \(y'' - 6y' +10y = 0\)