Math 360 ALGEBRA HOMEWORK 10 SOLUTIONS

Problem 1. Let *D* be an integral domain. If *n* is the characteristic of *D* then n1 = 0. If n = pq for primes *p* and *q*, then (pq)1 = 0.

Since (pq)1 = (p1)(q1) (why?), we have (p1)(q1) = 0. Because *D* has no zero divisors either p1 = 0 or q1 = 0. But since *p* or *q* are both less than *n* this is a contradiction with our assumption that *n* is the characteristic.

Problem 2. $\mathbb{Z}_3[x] = \{a_n x^n + a + n - 1x^{n-1} + \ldots + a_0 | a_i \in \mathbb{Z}_3\}$ is an infinite ring and its characteristic is 3.

Chapter 12 #1. Example of a finite non-commutative ring: Set of $k \times k$ matrices with entries from $\mathbb{Z}_n = Mat(k, \mathbb{Z}_n)$. There are n^{k^2} elements in this ring because there are k^2 entries and n choices for each entry. (multiplication principle!)

Example of an infinite non-commutative ring without unity: Set of $k \times k$ matrices with entries from $2\mathbb{Z} = Mat(k, 2\mathbb{Z})$

Chapter 12 #19. Let R be a ring. Prove that Center of $R = C = \{x \in R | rx = xr \text{ for all } x \in R\}$ is a subring of R.

1. $0 \in C$ so C is non-empty.

2. Let $a, b \in C$. (Need to prove $a - b \in R$).

Let $r \in R$. r(a - b) = ra - rb = ar - br = (a - b)r. The first equality holds by distributivity, the second by the assumption that a and b are in the center, and the third by distributivity again. So we get that a - b commutes with any $r \in R$ hence is in the center, proving that C is a subgroup under addition.

3. Let $a, b \in C$. (Need to prove $ab \in R$).

Let $r \in R$. r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r. These equalities hold by associativity of multiplication and our assumption that a and b are in the center. So we get that ab commutes with any $r \in R$ hence is in the center, proving C is closed under multiplication.

Chapter 12 #22. Let R be a group with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under multiplication.

1. $1 \in U(R)$ so U(R) is non-empty.

2. Let $a, b \in U(R)$. Then a and b have multiplicative inverses in R, a^{-1} and b^{-1} respectively. (Need to prove $ab \in U(R)$). Then $(ab)(b^{-1}a^{-1}) = a(b(b^{-1})a^{-1} = a1a^{-1} = 1$. Similarly $(b^{-1}a^{-1})(ab) = 1$. This proves that $b^{-1}a^{-1}$ is the multiplicative inverse of ab. Hence ab is in U(R).

3. If $a \in U(R)$ then obviously its inverse is also invertible and hence in U(R). The three steps above prove that U(R) is a group under multiplication of R.

Chapter 12 #23. Determine $U(\mathbb{Z}_i)$.

An element $x + yi \in \mathbb{Z}_i$ is invertible iff there exists $a + bi \mathbb{Z}_i$ such that (x + yi)(a + bi) = 1. Consider this equation in the bigger ring (in fact field) \mathbb{C} . Then the multiplicative inverse of x + yi would be $\frac{1}{x+yi} = \frac{x-yi}{x^2+y^2} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i$. Solutions have integer components (as desired) if $\frac{x}{x^2+y^2}$ and $\frac{y}{x^2+y^2}$ are both integers. This happens only when $x^2 + y^2 = 1$. So possibilities are: x = 1, y = 0, x = -1, y = 0, x = 0, y = 1, and x = 0, y = -1. So invertible elements in \mathbb{Z}_i are $\pm 1, \pm i$.

Chapter 13 #8. Describe all zero-divisors and units of $\mathbb{Z} \otimes \mathbb{Q} \otimes \mathbb{Z}$.

Zero divisors:

An element of the form (0, r, a) with $r \in \mathbb{Q}$ and $a \in \mathbb{Z}$ is a zero divisor because (0, r, a)(1, 0, 0) = (0, 0, 0)

An element of the form (a, 0, b) with $a, b \in \mathbb{Z}$ is a zero divisor because (a, 0, b)(0, 1, 0) = (0, 0, 0)An element of the form (a, r, 0) with $r \in \mathbb{Q}$ and $a \in \mathbb{Z}$ is a zero divisor because (a, r, 0)(0, 0, 1) = (0, 0, 0)

Units:

 $U = \{(a, b, c) \in \mathbb{Z} \otimes \mathbb{Q} \otimes \mathbb{Z} | a = \pm 1, b \neq 0, c = \pm 1\}.$ (What is the inverse?)

Chapter 13 #12. Consider 3 and 4 in \mathbb{Z}_{12} . Since $3 \times 4 = 0$ in \mathbb{Z}_{12} they are both zero-divisors however 7=3+4 is not zero and not a zero divisor in \mathbb{Z}_{12} .

Chapter 13 #14. Let R be a ring with 1 and $N = \{a \in R | a^n = 0 \text{ for some } n \in \mathbb{Z}^+\}.$

1. $0 \in N$ so N is non-empty.

2. Let $a, b \in N$. (Need to prove $a - b \in N$.) Then there exists $m, n \in \mathbb{Z}^+$ such that $a^n = 1$ and $b^m = 1$. Then (m + n) = (m + n)

$$(a-b)^{m+n} = a^{m+n} - \binom{m+n}{1} a^{m+n-1}b + \binom{m+n}{2} a^{m+n-2}b^2 + \dots$$
$$+(-1)^m \binom{m+n}{m+n-m} a^n b^m + (-1)^{m+1} \binom{m+n}{m+n-m-1} a^{n-1}b^{m+1} + \dots$$
$$+(-1)^{m+n-1} \binom{m+n}{m+n-m-n+1} a b^{m+n-1} + (-1)^{m+n}b^{m+n}$$

Notice that each term in the expansion has either a^n or b^m as a factor and hence is zero. Therefore $(a - b)^{m+n} = 0$ and is in N.

3. Let $a, b \in N$ and R be commutative. (Need to prove $ab \in N$.) Let m, n be as in part 2. Then $(ab)^{mn} = a^{mn}b^{mn} = (a^n)^m = (b^m)^n = 0$. So $ab \in N$ and N is closed under multiplication.

Chapter 13 #18. 1 + 3i and 1 + 2i are in $\mathbb{Z}_5[i]$ and (1 + 3i)(1 + 2i) = -5 + 5i which is 0 in $\mathbb{Z}_5[i]$.

Chapter 13 #22. Let $R = \{f | f : \mathbb{R} \to \mathbb{R} \text{ is a function } \}$ We know R is a commutative ring under function addition and multiplication.

a. Zero divisors of R: f(x) is a zero divisor of R iff f(x) = 0 has a solution in \mathbb{R} . Suppose f(x) is a non-zero function and f(c) = 0 for some $c \in \mathbb{R}$. Define

$$g(x) = \begin{cases} 0 & \text{if } x \neq c \\ 1 & \text{if } x = c \end{cases}$$

Then f(x)g(x) = 0 for all $x \in R$ and neither f(x) nor g(x) is zero.

b. Nilpotent elements of R: The only nilpotent element of R is the function zero because $(f(x))^n = 0$ holds iff f(x) = 0

c. Every non-zero element is a zero divisor or a unit: Let f(x) be in R. As discussed in part1 if f(x) = 0 for some $x \in R$, then f(x) is a zero divisor. Otherwise we can define the multiplicative inverse of f(x) to be $\frac{1}{f(x)}$.

Chapter 13 #25. Let R be a ring with unity 1 and product of any two non-zero elements is non-zero in R.

If ab = 1 then (ab)a = a. By associativity of multiplication and cancelation of addition this implies a(ba) - a = 0. By distributivity we get a(ba - 1) = 0. By the assumption on the ring, either a = 0 or ba - 1 = 0. Since ab = 1, a cannot be zero so ba - 1 = 0, that is ba = 1.

Chapter 13 #38. Let R be a commutative ring and ab be a zero-divisor. Then there exists $x \in R$ such that $x \neq 0$ and (ab)x = 0. Then by associativity a(bx)=0.

If $bx \neq 0$ then a is a zero-divisor. If bx = 0 then b is a zero divisor.

(We need R is commutative because otherwise we would have to distinguish between left zerodivisor and right-zero divisor).