
Math 360 ALGEBRA HOMEWORK 10 SOLUTIONS

Problem 1. Let D be an integral domain. If n is the characteristic of D then n1 = 0.
If n = pq for primes p and q, then (pq)1 = 0.
Since (pq)1 = (p1)(q1) (why?), we have (p1)(q1) = 0. Because D has no zero divisors either

p1 = 0 or q1 = 0. But since p or q are both less than n this is a contradiction with our assumption
that n is the characteristic.

Problem 2. Z3[x] = {anx
n + a + n− 1xn−1 + . . . + a0|ai ∈ Z3} is an infinite ring and its

characteristic is 3.

Chapter 12 #1. Example of a finite non-commutative ring: Set of k× k matrices with entries
from Zn = Mat(k,Zn). There are nk2

elements in this ring because there are k2 entries and n
choices for each entry. (multiplication principle!)

Example of an infinite non-commutative ring without unity: Set of k × k matrices with entries
from 2Z = Mat(k, 2Z)

Chapter 12 #19. Let R be a ring. Prove that Center of R = C = {x ∈ R|rx = xr for all x ∈
R} is a subring of R.

1. 0 ∈ C so C is non-empty.

2. Let a, b ∈ C. (Need to prove a− b ∈ R ).
Let r ∈ R. r(a − b) = ra − rb = ar − br = (a − b)r. The first equality holds by distributivity,

the second by the assumption that a and b are in the center, and the third by distributivity again.
So we get that a− b commutes with any r ∈ R hence is in the center, proving that C is a subgroup
under addition.

3. Let a, b ∈ C. (Need to prove ab ∈ R ).
Let r ∈ R. r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r. These equalities hold by associativity

of multiplication and our assumption that a and b are in the center. So we get that ab commutes
with any r ∈ R hence is in the center, proving C is closed under multiplication.

Chapter 12 #22. Let R be a group with unity and let U(R) denote the set of units of R.
Prove that U(R) is a group under multiplication.

1. 1 ∈ U(R) so U(R) is non-empty.

2. Let a, b ∈ U(R). Then a and b have multiplicative inverses in R, a−1 and b−1 respectively.
(Need to prove ab ∈ U(R)).
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Then (ab)(b−1a−1) = a(b(b−1)a−1 = a1a−1 = 1. Similarly (b−1a−1)(ab) = 1. This proves that
b−1a−1 is the multiplicative inverse of ab. Hence ab is in U(R).

3. If a ∈ U(R) then obviously its inverse is also invertible and hence in U(R)
The three steps above prove that U(R) is a group under multiplication of R.

Chapter 12 #23. Determine U(Zi).
An element x + yi ∈ Zi is invertible iff there exists a + bi Zi such that (x + yi)(a + bi) = 1.
Consider this equation in the bigger ring (in fact field) C. Then the multiplicative inverse of

x + yi would be 1
x+yi

= x−yi
x2+y2 = x

x2+y2 − y
x2+y2 i. Solutions have integer components (as desired)

if x
x2+y2 and y

x2+y2 ar e both integers. This happens only when x2 + y2 = 1. So possibilities are:
x = 1, y = 0, x = −1, y = 0, x = 0, y = 1, and x = 0, y = −1. So invertible elements in Zi are
±1,±i.

Chapter 13 #8. Describe all zero-divisors and units of Z⊗Q⊗ Z.

Zero divisors:
An element of the form (0, r, a) with r ∈ Q and a ∈ Z is a zero divisor because (0, r, a)(1, 0, 0) =

(0, 0, 0)
An element of the form (a, 0, b) with a, b ∈ Z is a zero divisor because (a, 0, b)(0, 1, 0) = (0, 0, 0)
An element of the form (a, r, 0) with r ∈ Q and a ∈ Z is a zero divisor because (a, r, 0)(0, 0, 1) =

(0, 0, 0)

Units:
U = {(a, b, c) ∈ Z⊗Q⊗ Z|a = ±1, b 6= 0, c = ±1}. (What is the inverse?)

Chapter 13 #12. Consider 3 and 4 in Z12 . Since 3× 4 = 0 in Z12 they are both zero-divisors
however 7=3+4 is not zero and not a zero divisor in Z12.

Chapter 13 #14. Let R be a ring with 1 and N = {a ∈ R|an = 0 for some n ∈ Z+}.
1. 0 ∈ N so N is non-empty.

2. Let a, b ∈ N . (Need to prove a− b ∈ N .)
Then there exists m,n ∈ Z+ such that an = 1 and bm = 1.
Then

(a− b)m+n = am+n −
(

m + n

1

)
am+n−1b +

(
m + n

2

)
am+n−2b2 + . . .

+(−1)m

(
m + n

m + n−m

)
anbm + (−1)m+1

(
m + n

m + n−m− 1

)
an−1bm+1 + . . .

+(−1)m+n−1

(
m + n

m + n−m− n + 1

)
abm+n−1 + (−1)m+nbm+n
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Notice that each term in the expansion has either an or bm as a factor and hence is zero.
Therefore (a− b)m+n = 0 and is in N .

3. Let a, b ∈ N and R be commutative. (Need to prove ab ∈ N .) Let m,n be as in part 2. Then
(ab)mn = amnbmn = (an)m = (bm)n = 0. So ab ∈ N and N is closed under multiplciation.

Chapter 13 #18. 1 + 3i and 1 + 2i are in Z5[i] and (1 + 3i)(1 + 2i) = −5 + 5i which is 0 in
Z5[i].

Chapter 13 #22. Let R = {f |f : R→ R is a function }
We know R is a commutative ring under function addition and multiplication.

a. Zero divisors of R: f(x) is a zero divisor of R iff f(x) = 0 has a solution in R.
Suppose f(x) is a non-zero function and f(c) = 0 for some c ∈ R. Define

g(x) =

{
0 if x 6= c

1 if x = c

Then f(x)g(x) = 0 for all x ∈ R and neither f(x) nor g(x) is zero.

b. Nilpotent elements of R: The only nilpotent element of R is the function zero because
(f(x))n = 0 holds iff f(x) = 0

c. Every non-zero element is a zero divisor or a unit: Let f(x) be in R. As discussed in part1
if f(x) = 0 for some x ∈ R, then f(x) is a zero divisor. Otherwise we can define the multiplicative
inverse of f(x) to be 1

f(x)
.

Chapter 13 #25. Let R be a ring with unity 1 and product of any two non-zero elements is
non-zero in R.

If ab = 1 then (ab)a = a. By associativity of multiplication and cancelation of addition this
implies a(ba)−a = 0. By distributivity we get a(ba−1) = 0. By the assumption on the ring, either
a = 0 or ba− 1 = 0. Since ab = 1, a cannot be zero so ba− 1 = 0, that is ba = 1.

Chapter 13 #38. Let R be a commutative ring and ab be a zero-divisor. Then there exists
x ∈ R such that x 6= 0 and (ab)x = 0. Then by associativity a(bx)=0.

If bx 6= 0 then a is a zero-divisor. If bx = 0 then b is a zero divisor.
(We need R is commutative because otherwise we would have to distinguish between left zero-

divisor and right-zero divisor).
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