Math 360 ALGEBRA HOMEWORK 10 SOLUTIONS

Problem 1. Let D be an integral domain. If n is the characteristic of D then nl = 0.

If n = pq for primes p and ¢, then (pg)1 = 0.

Since (pq)l = (pl)(ql) (why?), we have (pl)(¢l) = 0. Because D has no zero divisors either
pl =0 or g1 = 0. But since p or q are both less than n this is a contradiction with our assumption
that n is the characteristic.

Problem 2. Zs[z] = {a,2" +a+n—12""' + ... + apla; € Z3} is an infinite ring and its
characteristic is 3.

Chapter 12 #1. Example of a finite non-commutative ring: Set of k X k matrices with entries
from Z, = Mat(k,Z,). There are n*" elements in this ring because there are k? entries and n
choices for each entry. (multiplication principle!)

Example of an infinite non-commutative ring without unity: Set of k x k matrices with entries
from 27 = Mat(k,27)

Chapter 12 #19. Let R be a ring. Prove that Center of R = C' = {x € R|rz = xr for all z €
R} is a subring of R.

1. 0 € C so C is non-empty.

2. Let a,b € C. (Need to prove a —b € R ).

Let 7 € R. r(a—b) =ra—rb=ar —br = (a — b)r. The first equality holds by distributivity,
the second by the assumption that a and b are in the center, and the third by distributivity again.
So we get that a — b commutes with any r € R hence is in the center, proving that C' is a subgroup
under addition.

3. Let a,b € C. (Need to prove ab € R ).

Let r € R. r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r. These equalities hold by associativity
of multiplication and our assumption that a and b are in the center. So we get that ab commutes
with any r € R hence is in the center, proving C' is closed under multiplication.

Chapter 12 #22. Let R be a group with unity and let U(R) denote the set of units of R.
Prove that U(R) is a group under multiplication.

1. 1 € U(R) so U(R) is non-empty.
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2. Let a,b € U(R). Then a and b have multiplicative inverses in R, a~! and b~! respectively.

(Need to prove ab € U(R)).



Then (ab)(b™'a™) = a(b(b"a™! = ala™' = 1. Similarly (b~'a"')(ab) = 1. This proves that
b~'a~! is the multiplicative inverse of ab. Hence ab is in U(R).

3. If a € U(R) then obviously its inverse is also invertible and hence in U(R)
The three steps above prove that U(R) is a group under multiplication of R.

Chapter 12 #23. Determine U(Z;).

An element = + yi € Z; is invertible iff there exists a + bi Z; such that (z + yi)(a + bi) = 1.

Consider this equation in the bigger ring (in fact field) C. Then the multiplicative inverse of
x + yi would be jyi = ;212’;2 = xg_“;yQ — xQ_yFygi. Solutions have integer components (as desired)
if xQITy? and ﬁ ar e both integers. This happens only when z? + 3> = 1. So possibilities are:
r=1Ly=0,z=-1,y=0,2 =0,y =1, and x = 0,y = —1. So invertible elements in Z; are

+1, 4.

Chapter 13 #8. Describe all zero-divisors and units of Z ® Q ® Z.

Zero divisors:

An element of the form (0,7, a) with r € Q and a € Z is a zero divisor because (0,7,a)(1,0,0) =
(0,0,0)

An element of the form (a,0,b) with a,b € Z is a zero divisor because (a,0,b)(0,1,0) = (0,0,0

An element of the form (a,r,0) with r € Q and a € Z is a zero divisor because (a,r,0)(0,0, 1
(0,0,0)

Units:
U={(a,b,c) cZ®@Q®7Zla==+1,b#0,c = £1}. (What is the inverse?)

Chapter 13 #12. Consider 3 and 4 in Z5 . Since 3 x 4 = 0 in Z, they are both zero-divisors
however 7=3-+4 is not zero and not a zero divisor in Zq,.

Chapter 13 #14. Let R be a ring with 1 and N = {a € R|a™ = 0 for some n € Z"}.
1. 0 € N so N is non-empty.

2. Let a,b € N. (Need to prove a —b € N.)
Then there exists m,n € Z* such that @™ = 1 and b™ = 1.

Then
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Notice that each term in the expansion has either a™ or 0™ as a factor and hence is zero.
Therefore (a — b)™™™ =0 and is in N.

3. Let a,b € N and R be commutative. (Need to prove ab € N.) Let m,n be as in part 2. Then
(ab)™™ = a™b"™ = (a™)™ = (b™)" = 0. So ab € N and N is closed under multiplciation.

Chapter 13 #18. 1+ 3i and 1 + 2i are in Zs[i| and (1 + 3i)(1 + 2¢) = —5 4 5¢ which is 0 in
Zsli].

Chapter 13 #22. Let R = {f|f : R — R is a function }
We know R is a commutative ring under function addition and multiplication.

a. Zero divisors of R: f(z) is a zero divisor of R iff f(x) = 0 has a solution in R.
Suppose f(x) is a non-zero function and f(c) = 0 for some ¢ € R. Define

g(x):{o ifx#c

1 fz=c

Then f(x)g(x) =0 for all x € R and neither f(x) nor g(x) is zero.

b. Nilpotent elements of R: The only nilpotent element of R is the function zero because

(f(z))" = 0 holds iff f(z) =0

c. Every non-zero element is a zero divisor or a unit: Let f(z) be in R. As discussed in partl
if f(x) =0 for some = € R, then f(z) is a zero divisor. Otherwise we can define the multiplicative

inverse of f(z) to be ﬁ

Chapter 13 #25. Let R be a ring with unity 1 and product of any two non-zero elements is
non-zero in R.

If ab = 1 then (ab)a = a. By associativity of multiplication and cancelation of addition this
implies a(ba) —a = 0. By distributivity we get a(ba — 1) = 0. By the assumption on the ring, either
a=0or ba—1=0. Since ab =1, a cannot be zero so ba — 1 = 0, that is ba = 1.

Chapter 13 #38. Let R be a commutative ring and ab be a zero-divisor. Then there exists
x € R such that z # 0 and (ab)z = 0. Then by associativity a(bz)=0.

If bx # 0 then a is a zero-divisor. If bz = 0 then b is a zero divisor.

(We need R is commutative because otherwise we would have to distinguish between left zero-
divisor and right-zero divisor).



