Chapter 9 #4. Is $H = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ a normal subgroup of $GL(2, \mathbb{R})$? No. For example, let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in H$. Then $ABA^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ which is not in H, so H is not normal in G.

Chapter 9 #10. Prove that a factor group of a cyclic group is cyclic.

Let $G = \langle a \rangle$.

Claim: G/H is generated by aH. Let $bH \in G/H$. (We need to show that $bH = (aH)^t$ for some $t \in \mathbb{Z}$.) Since $b \in G$, $b = a^r$ for some $r \in \mathbb{Z}$. Then $(aH)^r = a^r H = bH$ and we are done.

Chapter 9 #14. What is the order of $14 + \langle 8 \rangle$ in $\mathbb{Z}_{24}/\langle 8 \rangle$?

Note that $\langle 8 \rangle = \{0, 8, 16\}$. We have

 $2 (14 + \langle 8 \rangle) = (14 + \langle 8 \rangle) + (14 + \langle 8 \rangle) = 4 + \langle 8 \rangle \text{ because } 14 + 14 \equiv 4 \mod 24,$ $3 (14 + \langle 8 \rangle) = (4 + \langle 8 \rangle) + (14 + \langle 8 \rangle) = 18 + \langle 8 \rangle$ $4 (14 + \langle 8 \rangle) = (18 + \langle 8 \rangle) + (14 + \langle 8 \rangle) = 8 + \langle 8 \rangle \text{ because } 18 + 14 \equiv 8 \mod 24.$ Since $8 + \langle 8 \rangle = \langle 8 \rangle = \text{ identity in } \mathbb{Z}_{24}/\langle 8 \rangle$, order of $14 + \langle 8 \rangle$ is 4.

Chapter 9 #38. Let *H* be a normal subgroup of *G* and let $a \in G$. If the element *aH* has order 3 in the group G/H and |H| = 10, what are the possibilities for the order of *a*?

|aH| = 3 implies that $a^3 \in H$. Then the order of a^3 divides 10 by Lagrange's Theorem. So possibilities for order of a^3 are 1,2,5,or 10.

That is, $a^3 = e$ or $a^6 = e$ or $a^{15} = e$ or $a^{30} = e$. So possible orders of a are 3,6,15, or 30. (Think about why it can't be 1,2,or 5.)

Chapter 9 #44. If |G| = pq, where p and q are primes that are not necessarily distinct, prove that |Z(G)| = 1 or pq.

Suppose $Z(G) \neq 1$. Then Z(G) contains elements besides identity.

We will prove that |Z(G)| = pq.

For sake of contradiction, suppose $|Z(G)| \neq pq$. Then $Z(G) \neq G$, that is, there exists an $a \in G, a \notin Z(G)$.

Recall that centralizer of a in G, C(a) is a subgroup of G and it contains Z(G). It also contains $\langle a \rangle$.

Since $a \notin Z(G)$, we have $|Z(G)| < |C(a)| \le pq$. Since Z(G) = p or q by lagrange's Theorem and our assumptions above, and since again by Lagrange's Theorem |C(G)| divides |G|, we get C(G) = G. That is a commutes with every element in G which means $a \in Z(G)$. But this contradicts with $a \notin Z(G)$. Therefore |Z(G)| = pq.

Chapter 9 #48. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ where $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ki = j, -i = (-1)i, -j = (-1)j, -k = (-1)k.

a) Cayley table for G.

	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

b) $H = \{1, -1\}$ normal in G.

Note that $a1a^{-1} = 1$ for any $a \in G$ and $a(-1)a^{-1} = (-1)$ for any $a \in G$. So H is normal in G.

c) Cayley table for G/H.

Note that G/H has 8/2=4 elements.

 $H = \{1, -1\}$ $iH = \{i, -i\}$ $jH = \{j, -j\}$ $kH = \{k, -k\}$

Call these E, I, J, and K respectively.

		Ι		
Ε	Е	Ι	J	Κ
Ι	Ι	Е	Κ	J
J	J	Κ	Е	Ι
Κ	E I J K	J	Ι	Е